An IFN-γ-stimulated ATF6-C/EBP-β-signaling pathway critical for the expression of Death Associated Protein Kinase 1 and induction of autophagy.

نویسندگان

  • Padmaja Gade
  • Girish Ramachandran
  • Uday B Maachani
  • Mark A Rizzo
  • Tetsuya Okada
  • Ron Prywes
  • Alan S Cross
  • Kazutoshi Mori
  • Dhananjaya V Kalvakolanu
چکیده

The IFN family of cytokines operates a frontline defense against pathogens and neoplastic cells in vivo by controlling the expression of several genes. The death-associated protein kinase 1 (DAPK1), an IFN-γ-induced enzyme, controls cell cycle, apoptosis, autophagy, and tumor metastasis, and its expression is frequently down-regulated in a number of human tumors. Although the biochemical action of DAPK1 is well understood, mechanisms that regulate its expression are unclear. Previously, we have shown that transcription factor C/EBP-β is required for the basal and IFN-γ-induced expression of DAPK1. Here, we show that ATF6, an ER stress-induced transcription factor, interacts with C/EBP-β in an IFN-stimulated manner and is obligatory for Dapk1 expression. IFN-stimulated proteolytic processing of ATF6 and ERK1/2-mediated phosphorylation of C/EBP-β are necessary for these interactions. More importantly, IFN-γ failed to activate autophagic response in cells lacking either ATF6 or C/EBP-β. Consistent with these observations, the Atf6(-/-) mice were highly susceptible to lethal bacterial infections compared with the wild-type mice. These studies not only unravel an IFN signaling pathway that controls cell growth and antibacterial defense, but also expand the role of ATF6 beyond ER stress.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Eupafolin ameliorates lipopolysaccharide-induced cardiomyocyte autophagy via PI3K/AKT/mTOR signaling pathway

Objective(s): Eupafolin, a major active component of Eupatorium perfoliatum L., has anti-inflammatory and anti-oxidant properties. Lipopolysaccharide (LPS) is responsible for myocardial depression. A line of evidences revealed that LPS induces autophagy in cardiomyocytes injury. This study aims to evaluate the effects of eupafolin on LPS-induced cardiomyocyte autophagy...

متن کامل

Therapeutic potential of Paclitaxel against COVID-19

The coronavirus disease-2019(COVID-19) was reported in Wuhan, China, in late December 2019 and soon became the most serious global health challenge due to high rate of human-to-human transmission. The severe acute respiratory syndrome coronavirus 2(SARS-CoV-2), is a single-stranded RNA virus and belongs to the large Coronaviridae family. Paclitaxel, an antineoplastic drug extracted from the Tax...

متن کامل

Inactivation of mitogen-activated protein kinase signaling pathway reduces caspase-14 expression in impaired keratinocytes

Objective(s):Several investigations have revealed that caspase-14 is responsible for the epidermal differentiation and cornification, as well as the regulation of moisturizing effect. However, the precise regulation mechanism is still not clear. This study was aimed to investigate the expression of caspase-14 in filaggrin-deficient normal human epidermal keratinocytes (NHEKs) and to explore the...

متن کامل

The Role of Wnt/β-catenin Signaling Pathway in Rat Primordial Germ Cells Reprogramming and Induction into Pluripotent State

 Primordial Germ Cells (PGCs) are unipotent precursors of the gametes. PGCs can give rise to a type of pluripotent stem cells in vitro that are called embryonic germ (EG) cells. PGCs can also acquire such pluripotency in vivo and generate teratomas. Under specific culture conditions, PGCs can be reprogrammed to embryonic germ cells which are capable of expression of key pluripotency marker...

متن کامل

Noncanonical Fungal Autophagy Inhibits Inflammation in Response to IFN-γ via DAPK1

Defects in a form of noncanonical autophagy, known as LC3-associated phagocytosis (LAP), lead to increased inflammatory pathology during fungal infection. Although LAP contributes to fungal degradation, the molecular mechanisms underlying LAP-mediated modulation of inflammation are unknown. We describe a mechanism by which inflammation is regulated during LAP through the death-associated protei...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 109 26  شماره 

صفحات  -

تاریخ انتشار 2012